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Learning with Errors

Given a system of linear equationsin Z;: (Make RHS noisy)
4 B o

secrets € Z{;

— noise vector e from a
A b _AS +e distribution in ZZ"‘

& m X n @mme ﬁﬁttteletly.aﬁmt s efficiently
(with high probability)?

This simple innovation has baffled theorists and thrilled cryptographers



Learning with Errors

Find secret vector s given m vectors along with noisy inner prodt I

a; < Zg b;=(s,a;)+e €L,
€ <X

Most popular y: Discrete Gaussian with variance aq/V2n

Discrete Gaussian




Classical Algorithms for LWE B

e; < x (Discrete Gaussian with variance aq /v 2m)

* Naive Algorithm
* Find a set S of equations (a;, x) = b; such thatc; ).;cca; = (1,0, ...,0)
* C; ).ies bi gives first entry of s. But with probabilityé +q~ %M
* Repeat g2 times for high confidence

* Arora-Ge Algorithm
* An efficient time algorithm when noise is sufficiently concentrated.

» When ||¢;|| < d and q is sufficiently large, it takes exp (ﬁ(dz)) time



ai<—Z’C} bi=(s,ai)+eiEZq

H a rd n eSS Of LWE e; < y (Discrete Gaussian with variance aq /+/2)

* From (worst-case) lattice problems.

« Foraq > 2+/n, q = poly(n)
Regev [Reg05]: quantum reduction from two lattice problems

* Classical reductions:
* Peikert [Pei09]: classical reduction from a lattice problem for exponential g

* [BLPRS13]: Equivalent hardness of LWE keeping n log, g fixed.



Versatility of LWE

* Public Key Encryption

Compute Encrypted Data
L With Homomorphic Encryption
* Advanced Primitives

* Fully Homomorphic Encryption (FHE)
Attribute Based Encryption (ABE)
Indistinguishability Obfuscation (iO) — ™

Lossy Trapdoor Functions (LTDF) dENDCk43H A3FhMXfTe8

Certifiable Deletion
Quantum Homomorphic Encryption ﬂ ﬁ




Some useful Math and Quantum

* Notations
* w, = exp(2m/q); pr(x) = exp(—nx?/r?)
* Discrete Fourier Transform
* For f:Z, — C, its discrete fourier transform: f(x) = ZyEZq a);cyf(y)
e Quantum Fourier Transform
QFT A
* QFT,: A quantum gate; Yyez, f(0)[x) —> Syeq, f()[7)
 Efficient to implement: uses poly log g gates
* Poisson Summation Formula
* p(Z+u) =r1Y,czexpZmixu) py/r(x)

 Gaussian state preparation
« We can efficiently prepare a state close to )., o, (x)|x)



Hidden Subgroup Problem

Given:

* Agroup G (its generators) LetH < G

* f:G —> COLORS — 0O O o—0—0—@
* f(91) = f(g2) iff g1H = g,H 3 2 4 0 1 2 3
* Given as an oracle Task: Find H (its generators)

* If ¢ isfinite and abelian, we have efficient quantum algorithms.

Problem Group (G) Hidden Subgroup (H)

Deutsch-Jozsa A H = 77 (Constant) or H = {0} (Balanced)
Simon's n . .

Problem /A H = {0, s} for a secret string s

Period Finding 7. H = rZ (Multiples of order 1)



Dihedral Hidden Subgroup Problem

Dihedral Group of order 2q: D, = (r,t|r* =t1 =1, rtr =t~ ")
= 7, X Zg

(a,x) - (b,y) = (a+bx+(—1D%)

Hidden Subgroup: H = {(0,0), (1,s)} fors € Z,

Oracle: f: G — COLORS ; f(g,) = f(g,)iffg.H = g,H
(0,z) -H = {(0,2),(1,z + s)}
(1,z) -H= {(1,2),(0,z — s)} f((O, Z)) = f((l,z + S)) Vz€EIL,

A preprocessing : Get a superposition state of a coset

Oracler Measure last register
2 |a, x) |0) > z la, x) |f((a,x))) S 10,2) + 11,2 + 5)
X€Lq,AELy x€lLg,a€l, (Unif. rand. z € Z,)




D|hed ral Coset stateésS Hidden Subgroup: H = {(0,0), (1,s)} fors € Z,
We can create random Dihedral Coset states: 10,z) + |1,z + s)

Now we’ll apply QFT on first register

0,2)+1,2-+s) grron 2" register N (4,krj0, k) + W+, k)
=

M Jnd I (Unif. rand. in Z,)
easure 2"¢ register
B2k lpd =10) + wl] 1)

If we had |1/Jq/2> =0) + (—1)s|1) Measurein|4) ba51§ Get last bit of s

Kuperberg’s idea: Collect lots of {k, |Y;)} and combine them cleverly to get |1/)q/2)
o CNOT ke
Combining: [ ) Y1) — [P, ) |0) + Wgq [P 1)

Given exp (@(Jlog q)) samples, can find s in exp (@(w/log q)) time



L WE reduces to (faulty) DCP

Let’s work with 1-dimensional LWE. Recall [BLPRS13]: Equivalent hardness

of LWE keeping n log, g fixed.
LWE input: a « ng,b =sa-+e _ i .

Secrets € Z, e < Discrete Gaussian of width aq
Partition Zg' into hypercubes of side length w

®(v): hypercube correspondingto v € Z’C'I”

Choose w so that

¢ O(ta+ qv) + ©(t'a + qw) for any
distinctt,t' € Zy, v,w € Z™

« O(ta) = ®(ta + e) forany t w.h.p.

wVm <0(q)  w» agym ] P ST




LWE reduces to (faulty) DCP  rusofiwe:b=sa+e

. ®(v): hypercube correspondingto v € Zg'
Prepare the following state:
0) > 10y [9(ta)) + 1) ) 10) [B(b + ta))
t€Zg t€Zg , ,
| = 10) ) 10 D) +11) ) |t = 5) [B(e + t'a)
Measure the last register

tEZ,
Good Case: Both ta and e + ta belong to the same cell

We are leftwith |0,t) + |1,t — s)

t/EZq

This is a Dihedral coset state!
Bad Case: ta and e + ta belong to different cells

We are leftwith |b)|t) Forb « {0,1},t « Z,
Probability of bad state: inverse poly in log g

Problem: We can’t detect which is the case, so can’t throw away a bad state
~ Can only produce poly many correct states w.h.p. instead of exp (G)(w/ log q))



L WE = Extrapolated DCP

DCP states: 10, xx) +[1,x, +5s) Forasecrets € Z,

Extrapolated DCP states: Zf(j) lj,x;, +j-s) Forsomef:Z — C
JET

Gaussian EDCP: [ is a discrete Gaussian

[BKSW18]: Quantum equivalence of LWE and Gaussian EDCP

LWE — G-EDCP: Similar idea as LWE — DCP

This time start with z pr (1)) 2 t' — js) |®(je + t'a)) 2ND again measure
. last register
JE€Lq tI€lq

Good Case: For sufficiently large j, all je + t'a belong to the same cell

Again, can only produce poly many correct states w.h.p.



LWE = Extrapolated DCP b (j) = e~

G-EDCP — LWE:

Want to utilize the Gaussian amplitudes to get LWE samples

Given a G-EDCP state: Z oD x+j - smod q)

JEL,
nd 1 ;. L
QFT on 2 reglster> z z wéa,(xﬂ S)>,Dr(])|]>|a>
a€Zy jE€Lq

Measure 2" registel; a z wé“k’(j's”p,,(j) 1j)

JELg
T LHS of LWE
sample




L WE = Extrapolated DCP

Poisson Summation:
(ak,(j'S)> : :
W z Yq Pl p(Z +u) = rz exp(2mixu) py /(%)

JEL
XEZL
QFT on 1st register} a, z 2 wC]I(<ak,S)+b)pr(j)|b>
bELy JEL T Like RHS of LWE sample
- A{ay,s)+ b
. — ak,zz,fh/r(J"‘ |b>
Poisson | T DEL, jET 1
Summation
2 P1/r ( > |{(—ay, s) + e mod q)
e :=qj+ (ak, s)+ b M eel
easure) a ,(—ay,s) + e, mod q

Plex] = P1/r(ek) =,0r;\15(6k)



S|LWE)

Another attempt at quantum algorithms for LWE
Chen, Liu and Zhandry [CLZ22] defined quantum versions of LWE.

* SILWE): Instead of b = (a, s) + e, give a quantum state
« Samples: a « Z}, |¢p) = Zeezq f(e)|{a,s) + e mod q)

* Find s
If / is discrete Gaussian

Can measure |¢) to get (a, s) + e mod g with probability | f(e)|* (LWE sample)

[CHLLT25] reduce one such sample to a DCP state with inverse subexp probability!

Can start with subexp samples and get subexp DCP states.

Then apply Kuperberg’s sieve for a subexp algorithm.



LWE reduces to S|LWE)Phase

S|LWE)P"ase : Have an unknown phase term in the quantum state
Samples: a < Z, ¥ < Dy, |¢) = Xeez, f(e) - exp(2mied (y)) - l{a, s) + e mod q)

Possibly L The unknown phase
uncomputable
function A distribution over domain of 6

LWE » G-EDCP with — Sl LWE>phase

unknown shift
pr(J — OIpIxg +j - smod q)
\ | JELg | \ y |
Loosely similar to LWE —- G-EDCP Similarto G-EDCP — LWE
Error prob.: inverse exp instead of inverse poly
Cost: Unknown center ¢




Couple of open questions

* The unknown phase is small and follows Gaussian distribution, so can
making a guess of the phase help?

* Can we reduce more structured variants of LWE to S|LWE) / DCP?

* Ring-LWE, Module-LWE
* Instead of vectors, have polynomials (RLWE)/ module over polynomials (MLWE)
* Advantage: Efficient schemes
* Used in practical schemes (Kyber, Dilithium)
* Sparse LWE
* Each g; has only k(< n) non-zero entries.
* Motivation: Efficient schemes



Thank
You
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