

Towards Quantum Algorithms for Learning with Errors

Shashwat Agrawal

Learning with Errors

Given a system of linear equations in \mathbb{Z}_q : (Make RHS noisy)

$$\left[\begin{array}{c} A \\ b \end{array} \right]_{m \times n} = \mathbf{A}\mathbf{s} + \mathbf{e}$$

secret $\mathbf{s} \in \mathbb{Z}_q^n$

noise vector \mathbf{e} from a distribution in \mathbb{Z}_q^m

Given \mathbf{A} and \mathbf{b} , can we efficiently find \mathbf{s} (with high probability)?

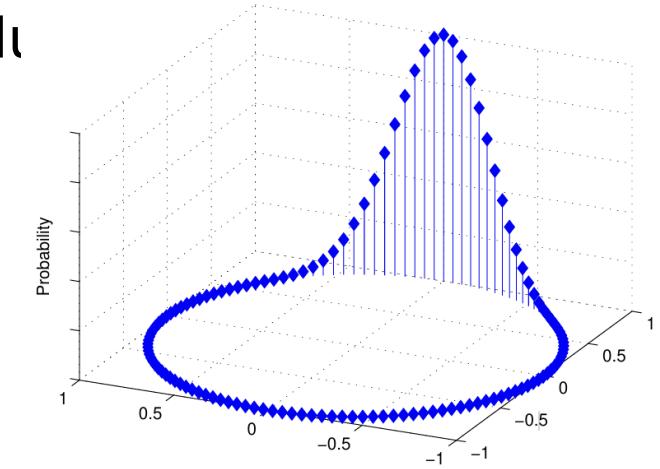
This simple innovation has baffled theorists and thrilled cryptographers

Learning with Errors

Find secret vector s given m vectors along with noisy inner products

$$\begin{aligned} a_i &\leftarrow \mathbb{Z}_q^n & b_i &= \langle s, a_i \rangle + e_i \in \mathbb{Z}_q \\ e_i &\leftarrow \chi \end{aligned}$$

Most popular χ : Discrete Gaussian with variance $\alpha q / \sqrt{2\pi}$



Discrete Gaussian

$$A = \begin{bmatrix} -a_1 & - \\ - & \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Classical Algorithms for LWE

$$\begin{aligned} a_i &\leftarrow \mathbb{Z}_q^n & b_i &= \langle s, a_i \rangle + e_i \in \mathbb{Z}_q \\ e_i &\leftarrow \chi \text{ (Discrete Gaussian with variance } \alpha q / \sqrt{2\pi} \text{)} \end{aligned}$$

- Naïve Algorithm
 - Find a set \mathbf{S} of equations $\langle a_i, x \rangle = b_i$ such that $c_i \sum_{i \in S} a_i = (1, 0, \dots, 0)$
 - $c_i \sum_{i \in S} b_i$ gives first entry of \mathbf{s} . But with probability $\frac{1}{q} + q^{-\Theta(n)}$
 - Repeat $q^{\Theta(n)}$ times for high confidence
- Arora-Ge Algorithm
 - An efficient time algorithm when noise is sufficiently concentrated.
 - When $\|e_i\| \leq d$ and q is sufficiently large, it takes $\exp(\tilde{O}(d^2))$ time

No known sub-exponential or arbitrary small exponential time algorithm for $\alpha q = \Omega(\sqrt{n})$

Hardness of LWE

$$\begin{aligned} a_i &\leftarrow \mathbb{Z}_q^n & b_i &= \langle s, a_i \rangle + e_i \in \mathbb{Z}_q \\ e_i &\leftarrow \chi \text{ (Discrete Gaussian with variance } \alpha q / \sqrt{2\pi} \text{)} \end{aligned}$$

- From (worst-case) lattice problems.
- For $\alpha q > 2\sqrt{n}$, $q = \text{poly}(n)$

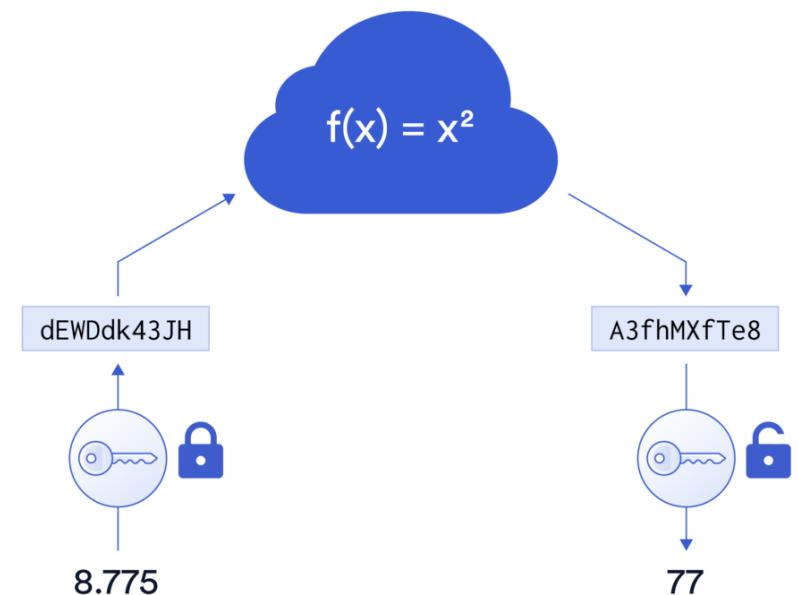
Regev [Reg05]: quantum reduction from two lattice problems

- Classical reductions:
 - Peikert [Pei09]: classical reduction from a lattice problem for exponential q
 - [BLPRS13]: Equivalent hardness of LWE keeping $n \log_2 q$ fixed.

Versatility of LWE

- Public Key Encryption
- Advanced Primitives
 - Fully Homomorphic Encryption (FHE)
 - Attribute Based Encryption (ABE)
 - Indistinguishability Obfuscation (iO)
 - Lossy Trapdoor Functions (LTDF)
 - Certifiable Deletion
 - Quantum Homomorphic Encryption

Compute Encrypted Data
With Homomorphic Encryption



Some useful Math and Quantum

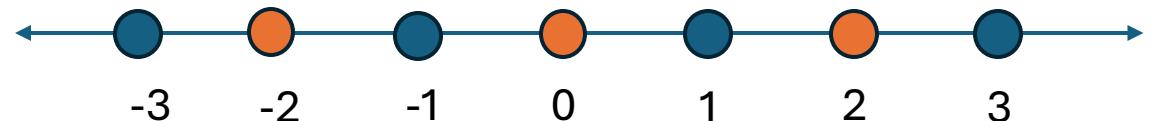
- Notations
 - $\omega_q := \exp(2\pi i/q)$; $\rho_r(x) = \exp(-\pi x^2/r^2)$
- Discrete Fourier Transform
 - For $f: \mathbb{Z}_q \rightarrow \mathbb{C}$, its discrete fourier transform: $\hat{f}(x) = \sum_{y \in \mathbb{Z}_q} \omega_q^{xy} f(y)$
- Quantum Fourier Transform
 - QFT_q : A quantum gate; $\sum_{x \in \mathbb{Z}_q} f(x) |x\rangle \xrightarrow{QFT_q} \sum_{y \in \mathbb{Z}_q} \hat{f}(y) |y\rangle$
 - Efficient to implement: uses $\text{poly log } q$ gates
- Poisson Summation Formula
 - $\rho(\mathbb{Z} + u) = r \sum_{x \in \mathbb{Z}} \exp(2\pi i x u) \rho_{1/r}(x)$
- Gaussian state preparation
 - We can efficiently prepare a state close to $\sum_{x \in \mathbb{Z}} \rho_r(x) |x\rangle$

Hidden Subgroup Problem

Given:

- A group G (its generators)
- $f: G \rightarrow \text{COLORS}$
 - $f(g_1) = f(g_2)$ iff $g_1H = g_2H$
 - Given as an oracle
- If G is finite and abelian, we have efficient quantum algorithms.

Let $H \leq G$



Task: Find H (its generators)

Problem **Group (G)** **Hidden Subgroup (H)**

Deutsch-Jozsa \mathbb{Z}_2^n $H = \mathbb{Z}_2^n$ (Constant) or $H = \{0\}$ (Balanced)

Simon's
Problem \mathbb{Z}_2^n $H = \{0, s\}$ for a secret string s

Period Finding \mathbb{Z} $H = r\mathbb{Z}$ (Multiples of order r)

Dihedral Hidden Subgroup Problem

Dihedral Group of order $2q$: $D_q := \langle r, t \mid r^2 = t^q = 1, rtr = t^{-1} \rangle$

$$\cong \mathbb{Z}_2 \ltimes \mathbb{Z}_q$$

$$(a, x) \cdot (b, y) := (a + b, x + (-1)^a y)$$

Hidden Subgroup: $H = \{(0,0), (1, s)\}$ for $s \in \mathbb{Z}_q$

Oracle: $f: G \rightarrow \text{COLORS}$; $f(g_1) = f(g_2)$ iff $g_1 H = g_2 H$

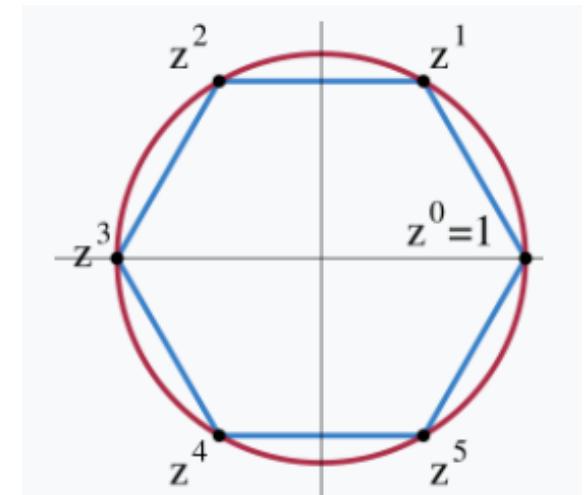
$$(0, z) \cdot H = \{(0, z), (1, z + s)\}$$

$$(1, z) \cdot H = \{(1, z), (0, z - s)\} \quad \therefore f((0, z)) = f((1, z + s)) \quad \forall z \in \mathbb{Z}_q$$

A preprocessing : Get a superposition state of a coset

$$\sum_{x \in \mathbb{Z}_q, a \in \mathbb{Z}_2} |a, x\rangle |0\rangle \xrightarrow{\text{Oracle } f} \sum_{x \in \mathbb{Z}_q, a \in \mathbb{Z}_2} |a, x\rangle |f((a, x))\rangle \xrightarrow{\text{Measure last register}} |0, z\rangle + |1, z + s\rangle$$

(Unif. rand. $z \in \mathbb{Z}_q$)



Dihedral Coset states

Hidden Subgroup: $H = \{(0,0), (1,s)\}$ for $s \in \mathbb{Z}_q$

We can create random Dihedral Coset states: $|0, z\rangle + |1, z+s\rangle$

Now we'll apply QFT on first register

$$\begin{array}{c} |0, z\rangle + |1, z+s\rangle \xrightarrow{\text{QFT on 2}^{\text{nd}} \text{ register}} \sum_{k \in \mathbb{Z}_q} \left(\omega_q^{kz} |0, k\rangle + \omega_q^{k(z+s)} |1, k\rangle \right) \\ \xrightarrow{\text{Measure 2}^{\text{nd}} \text{ register}} \xrightarrow{\substack{\downarrow \\ k, |\psi_k\rangle := |0\rangle + \omega_q^{ks} |1\rangle}} \text{(Unif. rand. in } \mathbb{Z}_q \text{)} \end{array}$$

If we had $|\psi_{q/2}\rangle = |0\rangle + (-1)^s |1\rangle$ $\xrightarrow{\text{Measure in } |\pm\rangle \text{ basis}}$ Get last bit of s

Kuperberg's idea: Collect lots of $\{k, |\psi_k\rangle\}$ and combine them cleverly to get $|\psi_{q/2}\rangle$

$$\text{Combining: } |\psi_k\rangle |\psi_{k'}\rangle \xrightarrow{\text{CNOT}} |\psi_{k+k'}\rangle |0\rangle + \omega_q^{sk'} |\psi_{k-k'}\rangle |1\rangle$$

Given $\exp(\Theta(\sqrt{\log q}))$ samples, can find s in $\exp(\Theta(\sqrt{\log q}))$ time

LWE reduces to (faulty) DCP

Let's work with 1-dimensional LWE.

LWE input: $\mathbf{a} \leftarrow \mathbb{Z}_q^{m \times 1}, \mathbf{b} = s\mathbf{a} + \mathbf{e}$

Secret $s \in \mathbb{Z}_q$ $\mathbf{e} \leftarrow$ Discrete Gaussian of width αq

Partition \mathbb{Z}_q^m into hypercubes of side length w

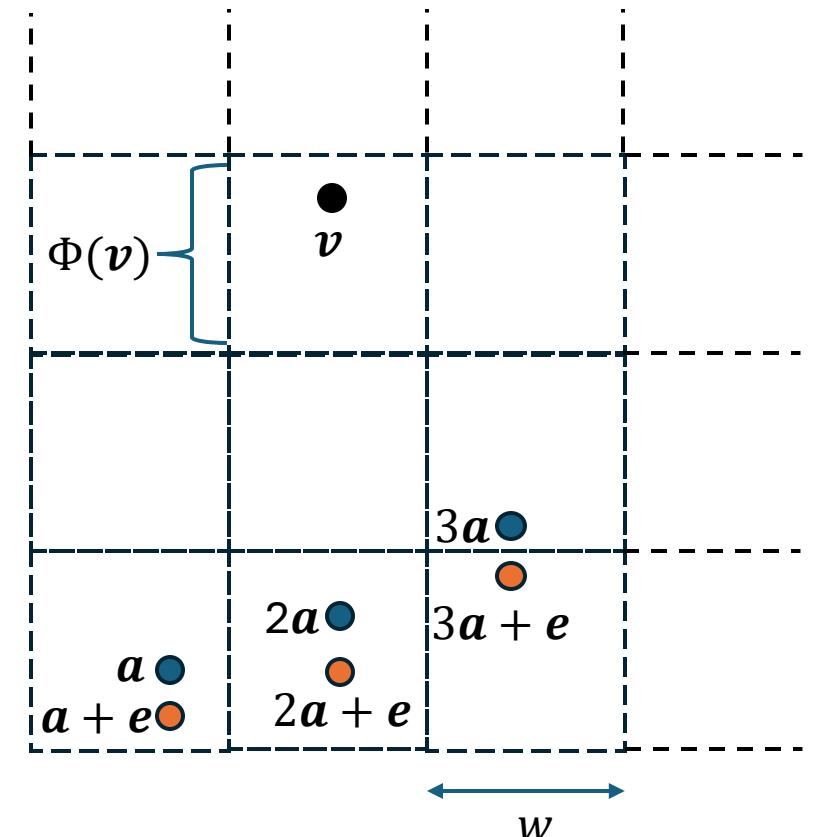
$\Phi(\mathbf{v})$: hypercube corresponding to $\mathbf{v} \in \mathbb{Z}_q^m$

Choose w so that

- $\Phi(t\mathbf{a} + q\mathbf{v}) \neq \Phi(t'\mathbf{a} + q\mathbf{w})$ for any distinct $t, t' \in \mathbb{Z}_q, \mathbf{v}, \mathbf{w} \in \mathbb{Z}^m$
- $\Phi(t\mathbf{a}) = \Phi(t\mathbf{a} + \mathbf{e})$ for any t w.h.p.

$$w\sqrt{m} \leq O(q) \quad w \gg \alpha q \sqrt{m}$$

Recall [BLPRS13]: Equivalent hardness of LWE keeping $n \log_2 q$ fixed.



LWE reduces to (faulty) DCP

RHS of LWE: $\mathbf{b} = s\mathbf{a} + \mathbf{e}$

$\Phi(\mathbf{v})$: hypercube corresponding to $\mathbf{v} \in \mathbb{Z}_q^m$

Prepare the following state:

$$|0\rangle \sum_{t \in \mathbb{Z}_q} |t\rangle |\Phi(t\mathbf{a})\rangle + |1\rangle \sum_{t \in \mathbb{Z}_q} |t\rangle |\Phi(\mathbf{b} + t\mathbf{a})\rangle = |0\rangle \sum_{t \in \mathbb{Z}_q} |t\rangle |\Phi(t\mathbf{a})\rangle + |1\rangle \sum_{t' \in \mathbb{Z}_q} |t' - s\rangle |\Phi(\mathbf{e} + t'\mathbf{a})\rangle$$

Measure the last register

Good Case: Both $t\mathbf{a}$ and $\mathbf{e} + t\mathbf{a}$ belong to the same cell

We are left with $|0, t\rangle + |1, t - s\rangle$ This is a Dihedral coset state!

Bad Case: $t\mathbf{a}$ and $\mathbf{e} + t\mathbf{a}$ belong to different cells

We are left with $|\mathbf{b}\rangle|t\rangle$ For $\mathbf{b} \leftarrow \{0,1\}, t \leftarrow \mathbb{Z}_q$

Probability of bad state: inverse poly in $\log q$

Problem: We can't detect which is the case, so can't throw away a bad state

∴ Can only produce poly many correct states w.h.p. instead of $\exp(\Theta(\sqrt{\log q}))$

LWE \equiv Extrapolated DCP

DCP states: $|0, x_k\rangle + |1, x_k + s\rangle$ For a secret $s \in \mathbb{Z}_q$

Extrapolated DCP states: $\sum_{j \in \mathbb{Z}} f(j) |j, x_k + j \cdot s\rangle$ For some $f: \mathbb{Z} \rightarrow \mathbb{C}$

Gaussian EDCP: f is a discrete Gaussian $f(j) = \rho_r(j) = e^{-\pi j^2/r^2}$

[BKS18]: Quantum equivalence of LWE and Gaussian EDCP

LWE \rightarrow G-EDCP: Similar idea as LWE \rightarrow DCP

This time start with $\sum_{j \in \mathbb{Z}_q} \rho_r(j) |j\rangle \sum_{t' \in \mathbb{Z}_q} |t' - js\rangle |\Phi(je + t'a)\rangle$ and again measure last register

Good Case: For sufficiently large j , all $je + t'a$ belong to the same cell

Again, can only produce poly many correct states w.h.p.

LWE ≡ Extrapolated DCP

$$\rho_r(j) = e^{-\pi j^2/r^2}$$

G-EDCP \rightarrow LWE:

Want to utilize the Gaussian amplitudes to get LWE samples

Given a G-EDCP state:

$$\sum_{j \in \mathbb{Z}_q} \rho_r(j) |j\rangle |x + j \cdot s \bmod q\rangle$$

QFT on 2nd register

$$\sum_{a \in \mathbb{Z}_q^n} \sum_{j \in \mathbb{Z}_q} \omega_q^{\langle a, (x + j \cdot s) \rangle} \rho_r(j) |j\rangle |a\rangle$$

Measure 2nd register

$$a_k, \sum_{j \in \mathbb{Z}_q} \omega_q^{\langle a_k, (j \cdot s) \rangle} \rho_r(j) |j\rangle$$

↑
LHS of LWE sample

LWE \equiv Extrapolated DCP

$$a_k, \sum_{j \in \mathbb{Z}_q} \omega_q^{\langle a_k, (j \cdot s) \rangle} \rho_r(j) |j\rangle$$

QFT on 1st register

Poisson Summation:

$$\rho(\mathbb{Z} + u) = r \sum_{x \in \mathbb{Z}} \exp(2\pi i x u) \rho_{1/r}(x)$$

$$a_k, \sum_{b \in \mathbb{Z}_q} \sum_{j \in \mathbb{Z}} \omega_q^{j(\langle a_k, s \rangle + b)} \rho_r(j) |b\rangle$$

Like RHS of LWE sample

Poisson
Summation

$$= a_k, \sum_{b \in \mathbb{Z}_q} \sum_{j \in \mathbb{Z}} \rho_{1/r} \left(j + \frac{\langle a_k, s \rangle + b}{q} \right) |b\rangle$$

$$= a_k, \sum_{e \in \mathbb{Z}} \rho_{1/r} \left(\frac{e}{q} \right) | \langle -a_k, s \rangle + e \bmod q \rangle$$

Measure

$$\mathbb{P}[e_k] = \rho_{1/r}^2 \left(\frac{e_k}{q} \right) = \rho_{\frac{q}{r\sqrt{2}}}(e_k)$$

$$e := qj + \langle a_k, s \rangle + b$$

$S|LWE\rangle$

Another attempt at quantum algorithms for LWE

Chen, Liu and Zhandry [CLZ22] defined quantum versions of LWE.

- $S|LWE\rangle$: Instead of $b = \langle \mathbf{a}, \mathbf{s} \rangle + e$, give a quantum state
 - Samples: $\mathbf{a} \leftarrow \mathbb{Z}_q^n$, $|\phi\rangle := \sum_{e \in \mathbb{Z}_q} f(e) |\langle \mathbf{a}, \mathbf{s} \rangle + e \bmod q\rangle$
 - Find \mathbf{s}
If f is discrete Gaussian $f(e) = \rho_r(e)$

Can measure $|\phi\rangle$ to get $\langle \mathbf{a}, \mathbf{s} \rangle + e \bmod q$ with probability $|f(e)|^2$ (LWE sample)

[CHLLT25] reduce one such sample to a DCP state with inverse subexp probability!

Can start with subexp samples and get subexp DCP states.

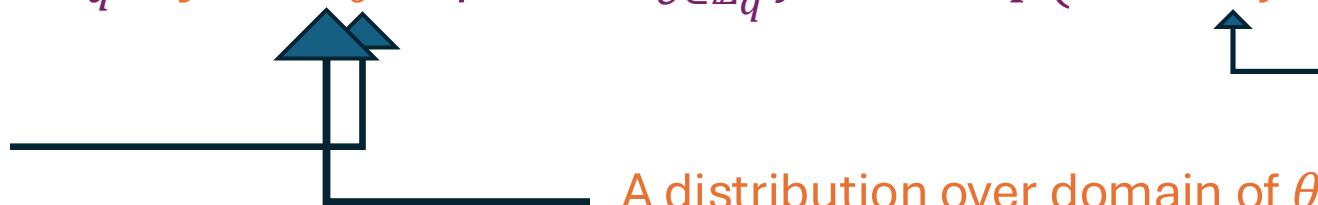
Then apply Kuperberg's sieve for a subexp algorithm.

LWE reduces to $S|LWE\rangle^{\text{phase}}$

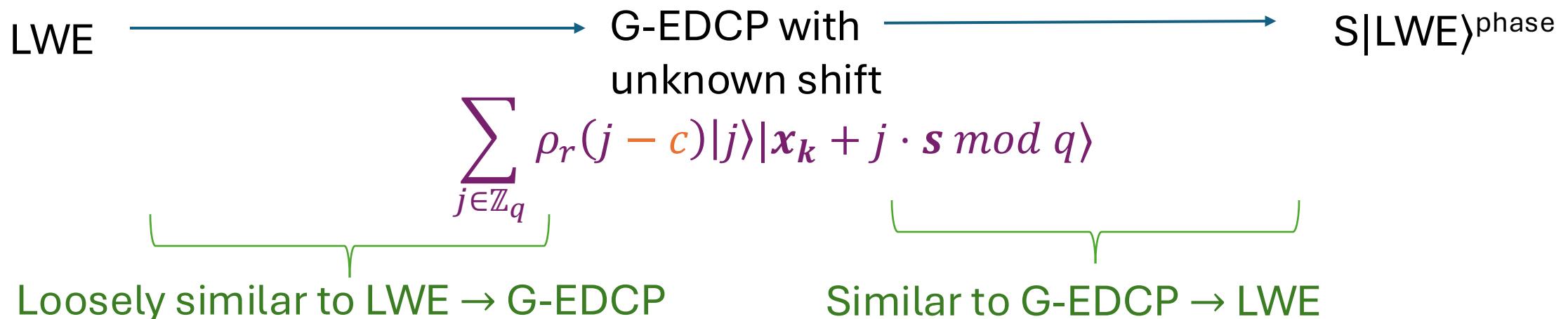
$S|LWE\rangle^{\text{phase}}$: Have an unknown phase term in the quantum state

Samples: $\mathbf{a} \leftarrow \mathbb{Z}_q^n$, $\mathbf{y} \leftarrow D_\theta$, $|\phi\rangle := \sum_{e \in \mathbb{Z}_q} f(e) \cdot \exp(2\pi i e \theta(\mathbf{y})) \cdot |\langle \mathbf{a}, \mathbf{s} \rangle + e \text{ mod } q\rangle$

Possibly
uncomputable
function



The unknown phase



Error prob.: inverse exp instead of inverse poly

Cost: Unknown center c

Couple of open questions

- The unknown phase is small and follows Gaussian distribution, so can making a guess of the phase help?
- Can we reduce more structured variants of LWE to $S|LWE\rangle$ / DCP?
 - Ring-LWE, Module-LWE
 - Instead of vectors, have polynomials (RLWE)/ module over polynomials (MLWE)
 - Advantage: Efficient schemes
 - Used in practical schemes (Kyber, Dilithium)
 - Sparse LWE
 - Each a_i has only $k(\ll n)$ non-zero entries.
 - Motivation: Efficient schemes

Thank
You