
Towards Quantum Algorithms 
for Learning with Errors

Shashwat Agrawal



Learning with Errors

Given a system of linear equations in ℤ𝑞: 

𝐴
𝑚 × 𝑛

b =As

This simple innovation has baffled theorists and thrilled cryptographers 

secret 𝑠 ∈ ℤ𝑞
𝑛 

we can efficiently find 𝑠

+𝑒 noise vector 𝑒 from a 
distribution in ℤ𝑞

𝑚

Can we find the secret 𝑠 efficiently 
(with high probability)?

(Make RHS noisy)



Learning with Errors
Find secret vector 𝑠 given 𝑚 vectors along with noisy inner products:

𝑎𝑖 ← ℤ𝑞
𝑛 𝑏𝑖 = 𝑠, 𝑎𝑖 + 𝑒𝑖 ∈ ℤ𝑞

𝑒𝑖 ← 𝜒

Most popular 𝜒:      Discrete Gaussian with variance 𝛼𝑞/ 2𝜋

Discrete Gaussian

−𝑎𝑖 − 𝑏𝑖𝐴 = 𝑏 =



Classical Algorithms for LWE

• Naïve Algorithm
• Find a set S of equations 𝑎𝑖 , 𝑥 = 𝑏𝑖  such that ci σ𝑖∈𝑆 𝑎𝑖  = 1,0, … , 0

• 𝑐𝑖 σ𝑖∈𝑆 𝑏𝑖  gives first entry of 𝑠. But with probability 
1

𝑞
+ 𝑞−Θ(𝑛)

• Repeat 𝑞Θ(𝑛) times for high confidence

• Arora-Ge Algorithm
• An efficient time algorithm when noise is sufficiently concentrated.

• When 𝑒𝑖 ≤ 𝑑 and 𝑞 is sufficiently large, it takes exp ෨𝑂 𝑑2  time

𝑎𝑖 ← ℤ𝑞
𝑛 𝑏𝑖 = 𝑠, 𝑎𝑖 + 𝑒𝑖 ∈ ℤ𝑞 

𝑒𝑖 ← 𝜒 (Discrete Gaussian with variance 𝛼𝑞/ 2𝜋)

No known sub-exponential or arbitrary small exponential time algorithm for 
𝛼𝑞 = Ω 𝑛



Hardness of LWE

• From (worst-case) lattice problems.
• For 𝛼𝑞 > 2 𝑛, 𝑞 = 𝑝𝑜𝑙𝑦 𝑛

   Regev [Reg05]: quantum reduction from two lattice problems
• Classical reductions:

• Peikert [Pei09]: classical reduction from a lattice problem for exponential 𝑞
• [BLPRS13]: Equivalent hardness of LWE keeping 𝑛 log2 𝑞 fixed.

𝑎𝑖 ← ℤ𝑞
𝑛 𝑏𝑖 = 𝑠, 𝑎𝑖 + 𝑒𝑖 ∈ ℤ𝑞 

𝑒𝑖 ← 𝜒 (Discrete Gaussian with variance 𝛼𝑞/ 2𝜋)



Versatility of LWE

• Public Key Encryption

• Advanced Primitives
• Fully Homomorphic Encryption (FHE)
• Attribute Based Encryption (ABE)
• Indistinguishability Obfuscation (iO)
• Lossy Trapdoor Functions (LTDF)
• Certifiable Deletion 
• Quantum Homomorphic Encryption



Some useful Math and Quantum

• Notations
• 𝜔𝑞 ≔ exp(2𝜋𝜄/𝑞);  𝜌𝑟 𝑥 = exp(−𝜋𝑥2/𝑟2)

• Discrete Fourier Transform
• For 𝑓: ℤ𝑞 → ℂ, its discrete fourier transform: መ𝑓 𝑥 =  σ𝑦∈ℤ𝑞

𝜔𝑞
𝑥𝑦

𝑓(𝑦)

• Quantum Fourier Transform
• 𝑄𝐹𝑇𝑞: A quantum gate; σ𝑥∈ℤ𝑞

𝑓 𝑥 |𝑥⟩
𝑄𝐹𝑇𝑞 

σ𝑦∈ℤ𝑞
መ𝑓 𝑦 |𝑦⟩

• Efficient to implement: uses 𝑝𝑜𝑙𝑦 log 𝑞 gates

• Poisson Summation Formula
• 𝜌 ℤ + 𝑢 = 𝑟 σ𝑥∈ℤ exp 2𝜋𝜄𝑥𝑢 𝜌1/𝑟(𝑥)

• Gaussian state preparation
• We can efficiently prepare a state close to σ𝑥∈ℤ 𝜌𝑟 𝑥 |𝑥⟩



Hidden Subgroup Problem
Given: 
• A group 𝐺 (its generators)
• 𝑓: 𝐺 → 𝐶𝑂𝐿𝑂𝑅𝑆

• 𝑓 𝑔1 = 𝑓(𝑔2) iff 𝑔1𝐻 = 𝑔2𝐻
• Given as an oracle

Let 𝐻 ≤ 𝐺

Task: Find 𝐻 (its generators) 

• If 𝐺 is finite and abelian, we have efficient quantum algorithms.

Problem Group (G) Hidden Subgroup (H)

Deutsch-Jozsa ℤ2
𝑛 𝐻 = ℤ2

𝑛 (Constant) or 𝐻 = {0} (Balanced)

Simon's 
Problem

ℤ2
𝑛 𝐻 = {0, 𝑠} for a secret string 𝑠

Period Finding ℤ 𝐻 = 𝑟ℤ (Multiples of order 𝑟)

0 1-1 32-2-3



Dihedral Hidden Subgroup Problem
Dihedral Group of order 2𝑞:    𝐷𝑞 ≔ 𝑟, 𝑡 𝑟2 = 𝑡𝑞 = 1, 𝑟𝑡𝑟 = 𝑡−1⟩

≅ ℤ2 ⋉ ℤ𝑞

𝑎, 𝑥 ⋅ 𝑏, 𝑦  ≔ (𝑎 + 𝑏, 𝑥 + −1 𝑎𝑦)

Hidden Subgroup: H = { 0,0 , (1, 𝑠)} for 𝑠 ∈ ℤ𝑞

Oracle: 𝑓: 𝐺 → 𝐶𝑂𝐿𝑂𝑅𝑆 ;  𝑓 𝑔1 = 𝑓(𝑔2) iff 𝑔1𝐻 = 𝑔2𝐻

0, 𝑧 ⋅ 𝐻 =  { 0, 𝑧 , (1, 𝑧 + 𝑠)}

∴ 𝑓 0, 𝑧 = 𝑓 1, 𝑧 + 𝑠  ∀ 𝑧 ∈ ℤ𝑞

A preprocessing : Get a superposition state of a coset

1, 𝑧 ⋅ 𝐻 =  { 1, 𝑧 , 0, 𝑧 − 𝑠 }

෍

𝑥∈ℤ𝑞,𝑎∈ℤ2

𝑎, 𝑥  0 Oracle 𝑓
෍

𝑥∈ℤ𝑞,𝑎∈ℤ2

𝑎, 𝑥  |𝑓((𝑎, 𝑥))⟩
Measure last register 

0, 𝑧 + 1, 𝑧 + 𝑠

(Unif. rand. 𝑧 ∈ ℤ𝑞)



Dihedral Coset states
We can create random Dihedral Coset states: 0, 𝑧 + 1, 𝑧 + 𝑠

Now we’ll apply QFT on first register

0, 𝑧 + 1, 𝑧 + 𝑠 𝑄𝐹𝑇 on 2nd register ෍

𝑘∈ℤ𝑞

𝜔𝑞
𝑘𝑧 0, 𝑘 + 𝜔𝑞

𝑘 𝑧+𝑠
1, 𝑘

Measure 2nd register
𝑘, 𝜓𝑘 ≔ 0 + 𝜔𝑞

𝑘𝑠 1

(Unif. rand. in ℤ𝑞)

If we had 𝜓𝑞/2 = 0 + −1 𝑠 1  Measure in ±  basis
Get last bit of 𝑠

Hidden Subgroup: H = { 0,0 , (1, 𝑠)} for 𝑠 ∈ ℤ𝑞

Kuperberg’s idea: Collect lots of {𝑘, 𝜓𝑘 }  and combine them cleverly to get 𝜓𝑞/2  

Given exp Θ log 𝑞  samples, can find 𝑠 in exp Θ log 𝑞  time

Combining: 𝜓𝑘 𝜓𝑘′

𝐶𝑁𝑂𝑇
𝜓𝑘+𝑘′ 0 + 𝜔𝑞

𝑠𝑘′ 𝜓𝑘−𝑘′ |1⟩ 



LWE reduces to (faulty) DCP
Let’s work with 1-dimensional LWE. Recall [BLPRS13]: Equivalent hardness 

of LWE keeping 𝑛 log2 𝑞 fixed.
𝒂 ← ℤ𝑞

𝑚×1, 𝒃 = 𝑠𝒂 + 𝒆LWE input:

Secret 𝑠 ∈ ℤ𝑞

Φ 𝒗 : hypercube corresponding to 𝒗 ∈ ℤ𝑞
𝑚

Partition ℤ𝑞
𝑚  into hypercubes of side length 𝑤

Choose 𝑤 so that 
• Φ 𝑡𝒂 + 𝑞𝒗 ≠ Φ 𝑡′𝒂 + 𝑞𝒘  for any 

distinct 𝑡, 𝑡′ ∈ ℤ𝑞, 𝒗, 𝒘 ∈ ℤ𝑚

• Φ 𝑡𝒂 = Φ 𝑡𝒂 + 𝒆  for any 𝑡 w.h.p.
𝑤 𝑚 ≤ 𝑂(𝑞) 𝑤 ≫ 𝛼𝑞 𝑚

𝑤

𝒂

3𝒂

2𝒂

𝒂 + 𝒆 2𝒂 + 𝒆

3𝒂 + 𝒆

𝒗Φ(𝒗)

𝑒 ← Discrete Gaussian of width 𝛼𝑞



LWE reduces to (faulty) DCP

0 ෍

𝑡∈ℤ𝑞

𝑡 Φ(𝑡𝒂) + |1⟩ ෍

𝑡∈ℤ𝑞

𝑡 Φ(𝒃 + 𝑡𝒂)

= 0 ෍

𝑡∈ℤ𝑞

𝑡 Φ(𝑡𝒂) + |1⟩ ෍

𝑡′∈ℤ𝑞

𝑡′ − 𝑠 Φ(𝒆 + 𝑡′𝒂)

Prepare the following state:

Measure the last register
Good Case: Both 𝑡𝒂 and 𝒆 + 𝑡𝒂 belong to the same cell

0, 𝑡 + |1, 𝑡 − 𝑠⟩We are left with This is a Dihedral coset state!

Bad Case: 𝑡𝒂 and 𝒆 + 𝑡𝒂 belong to different cells
𝑏 𝑡We are left with For 𝑏 ← {0,1}, 𝑡 ← ℤ𝑞

Problem: We can’t detect which is the case, so can’t throw away a bad state

Probability of bad state: inverse poly in log 𝑞 

∴ Can only produce poly many correct states w.h.p. instead of exp Θ log 𝑞

Φ 𝒗 : hypercube corresponding to 𝒗 ∈ ℤ𝑞
𝑚

RHS of LWE: 𝒃 = 𝑠𝒂 + 𝒆



LWE ≡ Extrapolated DCP
0, 𝑥𝑘 + 1, 𝑥𝑘 + 𝑠DCP states: For a secret 𝑠 ∈ ℤ𝑞

Extrapolated DCP states: ෍

𝑗∈ℤ

𝑓 𝑗 |𝑗, 𝒙𝒌 + 𝑗 ⋅ 𝒔⟩ For some 𝑓: ℤ → ℂ

Gaussian EDCP: 𝑓 is a discrete Gaussian

[BKSW18]:  Quantum equivalence of LWE and Gaussian EDCP 

LWE → G-EDCP: Similar idea as LWE → DCP

෍

𝑗∈ℤ𝑞

𝜌𝑟 𝑗 |𝑗⟩ ෍

𝑡′∈ℤ𝑞

𝑡′ − 𝑗𝑠 Φ(𝑗𝒆 + 𝑡′𝒂)

𝑓 𝑗 = 𝜌𝑟 𝑗 = 𝑒−𝜋𝑗2/𝑟2
 

This time start with and again measure 
last register

Good Case: For sufficiently large 𝑗, all 𝑗𝒆 + 𝑡′𝒂 belong to the same cell

Again, can only produce poly many correct states w.h.p. 



LWE ≡ Extrapolated DCP
G-EDCP → LWE:

෍

𝑗∈ℤ𝑞

𝜌𝑟 𝑗 𝑗 |𝒙 + 𝑗 ⋅ 𝒔 𝑚𝑜𝑑 𝑞⟩

𝜌𝑟 𝑗 = 𝑒−𝜋𝑗2/𝑟2
 

Given a G-EDCP state:

QFT on 2nd register ෍

𝒂∈ℤ𝑞
𝑛

෍

𝑗∈ℤ𝑞

𝜔𝑞
⟨𝒂, 𝒙+𝑗⋅𝒔 ⟩

𝜌𝑟 𝑗 𝑗 |𝒂⟩

Measure 2nd register 𝒂𝒌 , ෍

𝑗∈ℤ𝑞

𝜔𝑞
⟨𝒂𝒌, 𝑗⋅𝒔 ⟩

𝜌𝑟 𝑗 𝑗

LHS of LWE 
sample

Want to utilize the Gaussian amplitudes to get LWE samples 



LWE ≡ Extrapolated DCP

QFT on 1st register 𝒂𝒌 , ෍

𝑏∈ℤ𝑞

෍

𝑗∈ℤ

𝜔𝑞
𝑗( 𝒂𝒌,𝒔 +𝑏)

𝜌𝑟 𝑗 𝑏

= 𝒂𝒌 , ෍

𝑏∈ℤ𝑞

෍

𝑗∈ℤ

𝜌1/𝑟 𝑗 +
𝒂𝒌, 𝒔 + 𝑏

𝑞
𝑏

Poisson 
Summation

=  𝒂𝒌 , ෍

𝑒∈ℤ

𝜌1/𝑟

𝑒

𝑞
−𝒂𝒌, 𝒔 + 𝑒 𝑚𝑜𝑑 𝑞

𝑒 ≔ 𝑞𝑗 + 𝒂𝒌, 𝒔 + 𝑏
Measure 

𝒂𝒌 , −𝒂𝒌, 𝒔 + 𝑒𝑘  𝑚𝑜𝑑 𝑞

Like RHS of LWE sample

ℙ[𝑒𝑘] = 𝜌1/𝑟
2 𝑒𝑘

𝑞
   = 𝜌 𝑞

𝑟 2

𝑒𝑘

Poisson Summation: 

𝜌 ℤ + 𝑢 = 𝑟 ෍

𝑥∈ℤ

exp 2𝜋𝜄𝑥𝑢 𝜌1/𝑟(𝑥)
𝒂𝒌 , ෍

𝑗∈ℤ𝑞

𝜔𝑞
⟨𝒂𝒌, 𝑗⋅𝒔 ⟩

𝜌𝑟 𝑗 𝑗



S|LWE⟩

Another attempt at quantum algorithms for LWE 
Chen, Liu and Zhandry [CLZ22] defined quantum versions of LWE.
• 𝑆|𝐿𝑊𝐸⟩: Instead of 𝑏 = 𝒂, 𝒔 + 𝑒, give a quantum state

• Samples: 𝒂 ← ℤ𝑞
𝑛, 𝜙 ≔ σ𝑒∈ℤ𝑞

𝑓 𝑒 𝒂, 𝒔 + 𝑒 𝑚𝑜𝑑 𝑞

• Find 𝒔

Can measure 𝜙  to get 𝒂, 𝒔 + 𝑒 𝑚𝑜𝑑 𝑞 with probability 𝑓 𝑒 2 (LWE sample)

[CHLLT25] reduce one such sample to a DCP state with inverse subexp probability!

𝑓 𝑒 = 𝜌𝑟 𝑒If 𝑓 is discrete Gaussian

Can start with subexp samples and get subexp DCP states.

Then apply Kuperberg’s sieve for a subexp algorithm.



LWE reduces to S|LWE⟩phase

LWE G-EDCP with 
unknown shift

S|LWE⟩phase

Loosely similar to LWE → G-EDCP Similar to G-EDCP → LWE

෍

𝑗∈ℤ𝑞

𝜌𝑟 𝑗 − 𝑐 𝑗 |𝒙𝒌 + 𝑗 ⋅ 𝒔 𝑚𝑜𝑑 𝑞⟩

Error prob.: inverse exp instead of inverse poly
Cost: Unknown center 𝑐

S|LWE⟩phase : Have an unknown phase term in the quantum state 

Samples: 𝒂 ← ℤ𝑞
𝑛,  𝒚 ← 𝐷𝜃 , 𝜙 ≔ σ𝑒∈ℤ𝑞

𝑓 𝑒 ⋅ exp 2𝜋𝜄𝑒𝜃 𝑦 ⋅ 𝒂, 𝒔 + 𝑒 𝑚𝑜𝑑 𝑞

The unknown phasePossibly 
uncomputable 
function A distribution over domain of 𝜃



Couple of open questions

• The unknown phase is small and follows Gaussian distribution, so can 
making a guess of the phase help? 

• Can we reduce more structured variants of LWE to 𝑆|𝐿𝑊𝐸⟩ / DCP?
• Ring-LWE, Module-LWE

• Instead of vectors, have polynomials (RLWE)/ module over polynomials (MLWE)
• Advantage: Efficient schemes
• Used in practical schemes (Kyber, Dilithium)

• Sparse LWE
• Each 𝑎𝑖 has only 𝑘(≪ 𝑛) non-zero entries.
• Motivation: Efficient schemes 



Thank 
You
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